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Abstract

A paradigm is developed for generating structured finite element models from solid models
by means of implicit surface definitionsl The implicit surfaces are defined by radial basis
functions. Internal features, such as material interfaces, sliding interfaces and cracks are treated
by enrichment techniques developed in the extended finite element method (X-FEM). Methods
for integrating the weak form for such models are proposed. These methods simplify the
generation of finite element models. Results presented for several examples show that the
accuracy of this method is comparable to standard unstructured finite element methods.



Introduction

Meshing of three-dimensional solids is still one of the most burdensome tasks in finite element
analysis. The difficulties of meshing have become particularly acute with the emergence of
models with 107 to 109 elements. In treating such large-scale, unstructured finite element
meshes, an inordinate amount of effort is devoted to:

¯ generating the mesh

¯ coping with the unstructured character of the equations during assembly and solution
procedures

¯ post-processing

Recently, it has become apparent that many of these difficulties can be circumvented by
using structured meshes in conjunction with recently developed techniques for representing in-
ternal discontinuities [5], and internal details [23]. In fact, with these techniques, it becomes
possible to model the detail associated with engineering problems with even greater fidelity
than conventional finite element methods. For example, it is possible to model complex sliding
surfaces within a body and to model cracks and small holes.

One of the sources from which these capabilities have evolved is the seminal paper by Me-
lenk and Babuska [2], in which the concept of partition of unity was first described. Belytschko
and Black [4] employed the concept to model cracks; in MoSs et al. [17] and Dolbow et al [18]
step functions were introduced through the partition of unity to model arbitrary discontinu-
ities. They called the method the extended finite element method (X-FEM). Babuska et al [2]
and Strouboulis et al. [24] illustrated the potential of the partition of unity concept in mod-
eling small holes in a mesh and introducing so-called handbook solutions; they called it the
generalized finite element method. The method was expanded in Strouboulis et al. [23], where
the focus was towards the extension of the classical finite element method to meshes that do
not conform to boundaries of the problem. In MoSs et al. [17] and Belytschko et al. [5] the
quadrature issue was studied for meshes that do not conform to internal boundaries.

The proposed method also has some capabilities that would be very difficult to incorporate
in an unstructured stress analysis program for solids:

¯ The ability to model crack growth, such as due to fatigue, without any remeshing.

¯ The ability to easily model complex systems of sliding interfaces, such as joints in rocks.

A novel feature of the method described here is its use of implicit surface definitions for both
external and internal surfaces. This enables the use of powerful techniques for surface definition
by implicit functions that have recently been developed; see Carr et al. [7] and O’Brien et al. [26].
In the former, up to 3 × 106 points were used to define extremely complex external surfaces;
these large systems were solved by multipolar methods.
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In this paper we describe a methodology for constructing the finite elements for structured
meshes for objects described by implicit surfaces, both for the outside boundary and interior
surfaces. For existing parts, a laser scan of body can be immediately translated into an implicit
description of the external boundaries. By means of holography and other methods, implicit
function descriptions of any internal surfaces can also be obtained. They can then be translated
to finite element models as described here. For CAD models or solid models, the construction
of an implicit surface model is also straightforward, for it is only necessary to extract a set
of surface points from the geometric model. Thus, the paradigm described here should enable
finite element analyses of complex engineering problems with almost no human intervention.

The concept of describing internal surfaces of a problem independent of a mesh by implicit
functions originated in Sukumar et al. [2I]. It has been used to model crack growth with level
sets in two dimensions by Stolarska et ak [22], crack growth in three dimensions by Gravouil
et al. [16]. The methodology has also been applied to solidification, Chessa et al. [9] and fluid
interfaces, Chessa et al. [10], and for particles in fluid s by Wagner et al. [29].

Thus the basis is available for the rapid development of methods that combine implicit
surface descriptions of engineering components with structured: finite element analysis. As in-
dicated in this paper, the synthesis of these methods makes possible an order of magnitude
simplification in the development of finite element discretization for complex solid models.

The outline of this paper is as follows. In the first section, the components of the paradigm,
including the implicit surface definitions, the approximating functions and the background
meshes are introduced. The finite element discretization, the strong form and weak form of
the governing equations are then explained,’ with emphasis on quadrature for integration in the
framework of the function definitions. We then look into the ,internal details such as cracks and
material interfaces defined as implicit functions. Results for function definitions and comPlete
solutions are then presented.

1 CAD model

1.1 Overview

We consider a body ~ with boundary F. The Euclidean coordinates are x = [x,y,z], where
boldface denotes a matrix or vector. We also use indicial notation, with lower case indices
pertaining to Cartesian components and upper case indices pertaining to nodes or points. Re-
peated lower case indices are summed on the number of spacial dimensions nsd.

We will first describe the procedure for the case when the object is enclosed by a single
surface. It may be convex or concave. The procedure described here consists of the following
steps.

¯ a set of points xI , I = I to nsp on the surface of the object and a few interior points xJ,



J = 1 to nip (the superscript I denotes index of the points that .define the shape of the
object) are obtained.

¯ an implicit function is constructed from xI such that ¢(xI) = 0 defines the surface of the
body.

¯ a set of voxels for 3D (pixels for 2D) that encompass the entire domain for which ¢(x) 
are constructed.

¯ a finite element discretization (called active pixels or voxels) is obtained based on the
voxels that are encompassed by the implicit surface.

These steps are illustrated in Fig. 1. For simplicity, we henceforth refer to both pixels and
voxels as voxels with the implicit assumption that in 2D we are refering to pixels.

1.2 Shape Definition by Implicit Functions

As can be seen from Fig. 1, we start with the set of points that define the object. The points can
be taken either directly from the object by a Scanner for the analysis of an existing component,
or they may be based on a CAD model. We defer the issue of interior features, such as material
interfaces, cracks, etc., to later.

The first step is to construct the implicit function description of the body. The surfaces are
described by fitting an approximant to a set of points on the surface xI, I = 1 to n8. A set of
0ff-surface points xI, I = 1 to n°~ is also needed; these.are generated by moving away from the
surface by an approximate surface normal, as in Turk and O’Brien [27].

At this time, we have chosen radial basis functions as the approximants, for the description
of surfaces by these techniques has achieved a relatively high state of robustness, see Carr et
al [7] and O’Brien et al. [26] for more detail. Implicit approximations of functions define the
surface by

¢(x) = (1)

i.e., the surface is the zero isobar of the function ¢(x). We impose the additional conditions:

¢(x) < 0 for x E (2)

¢(x) > 0 for x 
The expression for ¢(x) in terms of the radial basis functions R(r) 

(3)

(4)
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Figure 1: The schema for the CAD/FEM paradigm 



where ~s,I = -n~c to N are arbitrary parameters chosen to best fit the surface; r = IIx-
xql. The low order polynomial preceding the sum is added to achieve completeness of the
approximation. Examples of radial basis functions are

biharmonic spline : R(r) = r 

thin plate spline : R(r) = r2log(r) 

Gaussian ̄  R(r) = -~2 ;

triharmonic Spline : R(r) = 3 ¯

multiquadratic(for topographical data) R(r) = ~ + 2 ;

exponential ¯ R(r) = r.

The parameters c~i are obtained by solving the following equations

(ApT

where
Arj = R(llx I- xZl[), I,J = 1 to N,

z PIo = 1, I = 1 to N, j = 1 to nSD,
Plj =Xj ,

= {at} , I = 1toN,
/3 = {aI} , I = --nSD toO and
¢i = ¢(xI).

(5)
(6)
(7)
(s)
(9)

(10)

(11)

Note that ¢(xI). = 0 except for the off-surface points. The above equations are obtained
by setting x to xI for each of the surface points in Eq. (4). While the above system matrix 
both symmetric and positive semi-definite it is almost full; jn Carr et al. [7] multipolar tech-
niques make possible the treatment of millions of points. It should be noted that the matrix
on the LHS becomes singular when the points are not unique. We have experimented with the
biharmonic and exponential radial basis functions.

In generating the volumes for voxels that are cut by a surface, approximate local surface
representations are desirable. For this purpose, a local representation by finite element shape
functions is used:

= Z N (x) (12)
I

where ¢(x) is the approximation to the surface, ¢I = ¢(xI) where xr are the nodes of the v0xel
and Nr(x) are the shape functions, i.e. the 4-node shape functions for a pixel.

The zero isobar of this approximation is shown along with that of the radial basis functions
for an 0.96 radian arc of a circle in Fig. 2. It can be seen that the agreement is quite good,
though the exponential is better than the biharmonic.
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Figure 2: Local approximations of the zero isobar, compared with the exact curve for the
exponential and biharmonic cases respectively

1.3 Background mesh (Voxels)

The implicit function is enclosed by a bounding box B that includes all points x such that
¢(x) < 0. For the time being, we assume that the bounding box is rectangular, but this is not
necessary. The bounding box could also consist of unions of rectangular boxes.

An array of voxels sometimes called a background mesh, is then constructed. This method
is similar to the background method quadrature described for meshless methods in Belytschko
et al. [6]. The selection of the voxeI size is a crucial step̄  in the procedure, since it is necessary
to determine a voxel size that leads to reasonably economical computations,¯ yet corresponds
closely enough with the details of the object so that the boundaries of the object in each voxel
are simple.

The voxel size must also be such as to achieve to requisite accuracy in the finite element
’ solution without excessive solution time: This involves error estimates, which is a topic outside
the scope of this paper, see Babu~ka and Strouboulis [3]. In most cases, a reasonable voxel size
can be set by inspection.

1.4 Active voxels

The voxels that ar@ to be active in the finite element model are selected next. This is easily
accomplished from the implicit surface function, since at least one node of a voxel must be
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e Compute ¢(xx) for all nodes.

¯ Loop over all voxels, V= 1 to Nv.

- loop over nodes of voxels, I to N.

- if 3 a node Where the value of ¢~ < 0 =~. Active voxel.

- if ¢r < 0 V nodes =~ Active interior voxel.

- if Active voxel and not interior voxel =~ Active surface voxel.

- if not an Active voxel ~ Inactive voxeI.

¯ end loop over voxels.

Table 1: Procedure for classifying voxels as active and inactive voxels.

inside the surface for the voxel to be active. This implies that at least for one node of an active
voxel, ¢(xl) < 0. An algorithm for identifying the active voxels is given in Table 

2 Finite element discretization

The development of the discrete finite element equations of equilibrium is similar to that for
the standard finite element method. We will use a structured mesh, but the weak form for
a structured mesh is identical to that for an unstructured mesh. To begin, we consider the
virtual elements to be voxels and place nodes along the edges and surfaces of all active voxels.
This leads to a set of active nodes. An example for 4-node element is shown in Fig. 1. As
can be seen, active nodes will occur outside the object; these active nodes are associated with
active surface voxels. It is of course possible to vary the size of the cells by integer factors in
different subdomains or to use different order of elements. In fact, this method is extremely
well-suited to p-type elements or spectral elements, which tend to perform better when the
element surfaces are parallel and orthogonal, e.g. rectangular in two dimensions.

Here, for simplicity we consider small displacement elastostatics. The governing equations
are

where

V.cr+b=0in f~ (13)

or=C: ¢ (14)

6=Vsu (15)
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where er is the Cauchy stress, b is the body force per unit volume, C is Hooke’s tensor, z is

the strain, u is the displacement and V, isthe symmetric part of the gradient operator.

The essential and natural boundary conditions are, respectively

, u = fi on F~. (16)

n. (7 = t on Ft~ (17)

where F~ and l~t are the prescribed displacement and prescribed traction boundaries, respec-
tively.

The space of admissible displacement fields is

U ={uE U iu is smooth and u= fi on F~} (18)

The weak form of the equations of elastostatics is for u E 7~

f ~(u)C~(v)d~ = [ b. v~ +~ / ~. vdr Vv ~ Uo 
Jn J~ JF

where Uo is 7~ with fi = 0 on F~. The above canbe used directly only when prescribed dis-
placement boundaries coincide with the surface of the voxels.. Otherwise we use a Lagrange
multiplier method, see for. example Belytschko et al. [6].

The displacement field is given by.

U(X) --~ gI (XlUI (20)

I

where uz are the nodal displacements and Ni(x) the shape functions ¯(note that we use upper
case subscripts for subscripts that pertain to nodes). Substituting the above into the weak
form(ll) we obtain the standard finite element equations

where

(22)KIj = fa BTCBjdf~

NI(x)b(x)d~ f N~(x)t(-x)dr
:



Figure 3: Scheme to subdivide an active voxel for quadrature

and B is the standard strain-displacement matrix that gives s by

s = ~-~BIUI (24)

The numerical quadrature of the weak form(ll) is performed voxel by voxel similar to the
procedure used in the meshless EFG method [6]. F6r clarity, we simply consider the quadrature
of a scalar f; so we have

where N~~ is the number of active voxels.

The quadrature procedure depends on whether a voxel is a surface voxel or an interior voxel.
The surface and interior voxels can be segregated during the identification of the active vox-
els. Quadrature over the ~nterior voxels is straightforward. We use Gaussian quadrature with
the number of quadrature points depending on the order of the finite element approximation
in the element, e.g 2 x 2 Gauss quadrature for bilinear displacement elements in two dimensions.

For surface voxels, the integration procedure is more involved, since it is necessary to ac-
count for the surface that passes through the voxel, i.e. only part of the voxel contributes to,
~; this part is called ~. These techniques still require further development, but we describe
two methods based on linear approximation to the surface which works well with low order
elements. We first describe the methods in two dimensions. In the first method, the integration
is performed by cutting each voxel as shown in Fig:3 into two triangles. The finite element
approximation to the surface function (12), is approximated by a linear function using least
squares. Each of these triangles will then be cut by the surface into a quadrilateral and a
triangle. Thus, the quadrature over the voxel then consists of quadrature over 2 triangles and
2 quadrilaterals, over which standard quadrature methods are used.

In the second method, the same least square fit is used to subdivide the element into two
polygons. These are triangulate d by Delaunay triangulation and the quadrature is performed
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over the elements interior to the surface.

The traction boundary conditions involve quadrature over a curve or surface (in 2D and 3D
respectively). We integrate the traction term over the zero isobar of the finite element approx-
imation of the implicit function(Fig. 4)inside each of the surface elements where the traction
boundary condition is to be applied.

The integration on the boundary is performed as follows (We present procedure for arbitrary
quadrilaterals). We first find (711, ~1) and (7]2, ~2), the parental coordinates at the intersection
of the surface with the finite element; see Fig. 4. Consider the integral of 9(77, ~);

z =fr g(7], )dr (26)

where F is the surface according to the finite element approximation (12) of the implicit function.

1

dr = (dx2 + dye)~ (27)

and then

[(dF dx dx d~2+ +--" (29)

dr
(3O)if ]~2-~11>1712-7111 thenI= 1 9(7]’~)-~d~

dr dr]if 1~2 - ~1 ]<1T]2 -- 711 I then I ---- g(7],~) (31)
1 dr]

\

The above definitions facilitate the integration of the traction along the surface with finite
element approximation.

The integration over surface voxels for three dimensions is structured so that quadrature
formulas are only required for two tetrahedra and pentahedra. The hexahedral voxels are first
subdivided into tetrahedral subelements as shown in Fig. 5. As noted in Usui’[28], the hexahe-
dron may be subdivided into tetrahedra in two ways, but the subdivision shown in Fig. 5 is a

¯ better fit to the volume when the voxel is not a cuboid. Also, when hexahedra in a structured
mesh are subdivided into 6 tetrahedra, it is possible to ensure that the triangulation of the
contiguous surfaces is identical. For structured meshes, the elements will usually be cuboids,
but in some cases structured meshes generated by nonparallel surfaces are desirable. A linear
approximation is then obtained for thesurface in each tetrahedron.
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Figure 6: The two possibilities for subdivision of tetrahedr’a, ¢I = ¢(xx)

The tetrahedral subelements are then subdivided into two tetrahedra or a pentahedron and
a tetrahedron. The subdivision depends on the values of Cr at the nodes. We will call a subele-
ment active if it contributes to the Galerkin integrals (22), inactive if it is not.

We first seperate out the following:

1. if ¢I >_ 0 V I, then the subelement is inactive.

2. if ¢I _< 0 V I, then the subelement is active.

Any subelements that do not meet the above fall into .one of the following four categories:

¯ case 1 ¯ one ¢I of one sign, three ¢I of another sign; then the volume integral can be
obtained from the volumes of tetrahedra (Fig. 6a).

¯ case 2 ¯ two ¢I of one sign, two ¢1 of another sign; then the tetrahedral subelement
consists of two pentahedrons (Fig. 6b).

¯ case 3: one ¢I = 0; then the tetrahedral subelement consists of a pyramid and a tetrahe-
dron.

¯ case 4: two ¢I = 0; then the tetrahedral subelement consists of two tetrahedra.

Note that although it would be unusual for ¢I to vanish exactly, successful implementation
of the methods described here and for interior features require that ¢I be set to zero when it is
smaller than a mesh dependent tolerance, see Mo~s et al. [17].

The surface integral for inhomogeneous traction boundary conditions is either over a triangle
such as ABC or a quadrilateral such as ABCD; for the surface elements standard quadrature
techniques are used to evaluate the boundary integrals of the Galerkin weak form.

1̄4



3 Internal Details

In most engineering and scientific problems, objects that are analysed by finite elements have
substantial internal structure. Among these internal details are:

z
¯ interfaces between bonded materials

¯ cracks

¯ small holes, pores and dislocations

¯ unbonded interfaces

Some of these examples are illustrated in Fig. 7. In the following we describe how some of
these features are easily handled in the context of this method. In defining internal surfaces,
we again use implicit functions.

Any interface Fint ’is described by the zero isobar of an implicit function tint (x); we refer 
a single interface for clarity but the technique can be extended to many interfaces. The finite
element form of the implicit funtion is given in terms of nodal values by

¢ nt(x) = Ni(x)¢, (32)
I

or by radial basis functions as before. One useful form of an implicit function is the signed
distance function.

¢int(x) min Hx- x~ ]l sign(n-(x~- 

where n is a unit normal to the: internal surface; its direction is arbitrary.

(33)

3.1 Interfaces between bonded materials

Examples of interfaces between bonded materials are the interfaces between different con-
stituents of a composite material, the layers of a geotechnical model, materials bonded by
glueing and thermal fits. Some of these are described further in the examples.¯

Across a bonded interface, the displacement field is continuous but the strains are dis-
continuous. Thus, it is necessary to construct a displacement field that accommodates this
discontinuity in the derivative of the displacement.

The displacement field in the voxels intersected by the interface are enriched by methods
described in Belytschko et al. [5] and Sukumar et al. [21] to ’mode! the discontinuous derivative
in the displacement across the interface.
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For this purpose, we decompose the displacement field

U ~ Ust -~- Uenr (34)

where ust is the standard finite element field (Eq.(20)) and ~n~ i s t he enrichment field. F or a
discontinuous derivative the enrichment is

u~r = E a~(l¢l- I¢rl)N~(x) (35)
IEC

where a1 are additional degrees of freedom and C is the set of all nodes whose support is cut
by F~t. Note that the term Ni(x) localizes the enrichment so that sparsity of the discrete
equations is not adversely effected. A special modification described by Sukumar et al. [21] is
advantageous.

For voxels cut by Fint, the same procedures used for external boundaries must be used in
evaluating the integrals in Eq (23). A major difficulty in the method is presented by intersection
of surfaces. When F~t intersects F or two interior surfaces intersect within a voxel, the method
described previously does not suffice and more complicated schemes are needed. At this time,
simple mesh generation schemes are recommended, but we have not programmed this.

3.2 Cracks

Cracks are among the most common defe~ts that occur in mechanical components. Cracks are
associated with singularities in the elastostatic stress fields; the strength of the singularity is
the stress intensity factor which determines whether the crack is stable and its rate of growth
in cyclic loading. The method described here directly gives the strength of the singularity, i.e.
the stress intensity factor, by including the near-tip field as an enrichment.

The crack surface is defined by the implicit function

¢~’~t(x) = 0 (36)

A second implicit function ¢ is defined to represent the crack edge. This implicit function is
defined so that the intersection of ¢ = 0 with ¢ = 0 gives the crack edge, i.e. ¢~t(x) = ¢(x) -- 
It is also constructed to be normal to the crack interior levelset function ¢~t:

/

V¢ . V¢int = 0 (37)

Level set techniques (Sethian et al. [20]) can be used to update these functions to model
crack growth as described by Stolarska eta}. [22] in 2D and Gravouil et al. [15] in 3D.

Across the crack surface, the displacement field is discontinuous and the enrichment models
this discontinuity.

To define the displacement field the following nodes need to be identified.
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¯ the set of nodes whose support is completely cut by the crack (C).

¯ the set of nodes whose support is partially cut by the crack (P).

The enrichment field is given by

Ue~r(X) = aaNj(x)H(¢~nt(x)) + E cj kNj(x)Bk(x)
" JEP

where aj and cjk are additional nodal parameters and

(38)

+1 for y > 0 (39)H(y) = -1 for y < 0

The asymptotic field near the crack tip is represented by the function Bk in Eq.(38) where

0 cos (°) s n/0 , v Cos /40/
This enrichment Scheme is based on Fleming et al. [13].

The angle 0 for the enrichment is defined as

= tan -1 ¢int(x) (41)
¢(x)

More details can be found in Mo~s et al. [17] and Gravouil et al [16].

3.3 Sliding Interfaces

Sliding interfaces are an important feature in many engineering problems. For example slid-
ing surfaces are needed between a rod and sleeve, along joints in rock, etc. To model sliding
interfaces, the displacement field must be enriched so that discontinuities in the tangential com-
ponent of the displacement are included in the approximation. This is achieved by enriching
the field with a discontinuity in the direction tangential to the sliding surface.

A tangential discontiniuty can be constructed by enriching the tangential component of the
displacement field with the step function. For exampie in 2D, we can use

ue~r(x) = NI(x)alet(x)H(¢i’~t(x))
IEC

where et is the tangent to the discontinuity at ¢~nt = 0.
defined as et = ez × en where

e~ = iiv¢,~tlI

(42)

In 2D this tangent vector can be

(43)

18



Accuracy can be improved by adding an enrichment based on the nodal values of the tangent
(Belytschko et al. [5]). This is done by finding the tangent at the nodes, i.e. in 2D.

Uen~(X) .= Ni(x)azet(xi)H(¢i’~t(x)) (44)
IEC

The tangent is computed as a nodal average of the tangents in the element. The tangent is
then given by

= g o=, llv¢ (xi)ll’
(45)

where V¢~(xi) is the gradient in element e at node 
For three dimensional problems, two tangent vectors etl and et2 are needed. The enrichment

is given by

2

uenr(x) = Z N (x) (46)
IEC ~=1

4 Results

4.1 Accuracy of surface approximations

We first give some examples of the accuracy of the surface approximations. The error in this
definition is calculated by int.egrating the value of the function over the exact surface:

/*

Errr = Jr’ ¢(x) I (47)

where F is the exact surface. Different densities of surface points are taken to describe the
implicit function, using the radial basis functions defined in Eqs. (4) and (11), Two shapes
were considered;

¯ a circle

¯ a quarter piece of a slab with a hole.

The geometry and the contour plot for the second geometry is shown in Fig. 9. A quarter space
is considered due to axisymmetry.

It can be noted that the errors are comparable for the two types Of radial basis functions,
although the exponential is more accurate for the circle. Both methods give excellent accuracy
with a reasonable number of points. The function is plotted for the two radial basis functions for
a circle in Fig. 8. It can be clearly seen that even though both the radial basis functions define
the shape well and both functions are clearly positive outside the circle, the exponential basis
function is steeper and this property can be advantageous. Gaussian radial basis functions, not
reported here, can become negative outside the object, which is very undesirable.
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Figure 8: The implicit function of a circle for the biharmonic and exponential radial basis 
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Figure 9: The geometry for example 2 and contour plots of ¢(x)
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Number of points Biharmonic I Exponential

4 0.0834 0.0160
0.0221

16 0.0056
32 0.0014
64 3.5161 × 10-4

128 8.7924 x 10-5

254 2.2333 × 10-5

4.7369 × 10-4

1.2609 x 10=4

3.2046 × 10-s

8.0451 × 10-8

2.0134 × 10-8

5.1151 × 10-7

Example 1: Error for a circle of radius 3.

Number of points Biharmonic Exponential

30 0.0088 0.0087

60 0.0021 0.0021

120
240
480

5.2433 x 10-4

1.2927 x 10-4

3.2108 x 10"~

5.2572 x 10-4

1.2983 x 10-4

3.2257 x I0-5

Example 2: Error for the geometry shown in Fig. 9.

Table 2: Error in surface definition using different radial basis functions

4.2 Examples of complete solutions

Some standard examples are considered and solved following the schema in Fig. 1. The purpose
of these examples is to Study the effect of the errors in the quadrature of the weak form,
particularly the inhomogeneous traction boundary conditions, on the accuracy and rate of
convergence.

4.2.1 Hollow Cylinder with Internal Pressure

The first example taken is a hollow cylinder with internal pressure(p). This is modeled as 
quarter cylinder due to symmetry with the displacement fixed in the normal direction at the
two edges as shown in Fig. 10. The exact solution for the stress components in polar coordinates
are as follows(Timoshenko and Goodier [25])

ar(r,O)- b~-~ 2 1- ~ , (48)

o0(r,0) = b2 -~2 1+ , (49)

(50)~e(r, O) = 

where a is the inner radius and b is the outer radius. Note that due to axisymmetry the stresses
do not depend on 0. The displacements are as follows:
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a = 2 i n  
b = 4 i n  
p = 3000 psi 
E = 1000000 

FL f 
psi 

Figure 10: The problem setup for the hollow cylinder problem 

The parameters chosen in this problem are as follows: a = 2 in., b = 4 in., p = 3000 psi, and 
plane stress is assumed. The geometry is described by 20 equispaced surface points on each of 
the two arcs and each of the two straight sides. The surface comprising of the geometry shown 
in Fig. 10 is defined using radial basis approximations Eq. (4). A biharmonic basis is used 
in these calculations. The mesh is aligned to the straight edges to facilitate the application of 
the displacement boundary conditions. It should be noted that the geometry is defined for the 
quarter cylinder, thereby causing kinks in the surface geometry at the four corners as seen in 
Fig. 10. The radial basis functions seem to capture these kinks rather accurately. 

The convergence rate is observed to be 0.88 for the energy norm. The slightly reduced rate of 
convergence from the optimal rate of 1.0 can probably be attributed to the approximation of the 
traction boundary condition. As the traction is applied on the zero isobar of the approximation 
of the surface (Eq. 12), this may effect the accuracy of the solution. Some error may also be 
attributed to quadrature of Eq. (22), but the next example seems to indicate that this error is 
smaller than error arising from non-zero tractions. The rate of convergence here, incidentally, is 
not impaired by the number of points that define the geometry. We have run it with 40 points 
on each segment and obtained almost identical accuracy. 
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Figure 11: The error in energy for the hollow cylinder problem
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0, = l p s i  
L = 2 i n  
a = l i n  Y l  

Figure 12: The problem setup for the infinite plate with a hole 

4.2.2 

The next problem that we consider is that of an infinite plate with a hole of radius a subjected 
to a uniform tension uo in the x-direction. We model this by applying a traction equivalent 
to the exact stress caused by the uniform traction at infinity on a square plate with a finite 
dimension. The exact stress field is given by Timoshenko and Goodier [25] and is as follows; 

Infinite plate with a hole 

The radius of the hole, a = 1 in., Young’s modulus = 1000000 psi, and plane stress was 
assumed. The hole was described by the radial basis function with 30 surface points. The 
computations were made with structured meshes ranging from lox  10 to 80x80. A convergence 
study was performed for this problem. The rate of convergence is 0.9524 in the energy norm. 
The improved rate of convergence compared to the previous problem could be attributed to the 
absence of kinks and inhomogeneous traction boundary conditions on the implicit surface. 

4.2.3 

The next few examples illustrate the performance of the method in three dimensional problems 
for which closed form solutions are available. The primary intent was to study the effect of 
arbitrary interior interfaces on the accuracy of the method. 

A Spherical Inclusion under Uniaxial Tension 
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Figure 13: The error in energy for the infinite plate problem
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The first 3D example is a spherical inclusion under uniaxial tension in an infinite domain is 
shown in Fig. 14. The exact solution for this problem is given by Goodier [14] (see Appendix). 

Z 

I 

- Y  

Figure 14: A spherical inclusion in an infinite solid under uniaxial stress 

Figure 15: Polygonized material interface with 21 x 21 x 21 mesh 

In the numerical model, we consider a cubic domain of size 1.0 x 1.0 x 1.0 with an inclusion 
of radius 0.4 at its center. We impose the exact tractions from the closed form solution to 
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the boundary Of the cubic domain, with appropriate constraints added to remove rigid body
modes. The material properties are: Young’s modulus E1 = 2.0 and E2 = 1.0, Poisson’s ratio
/21 ~--- /22 ~--- 0.3

0
z

0¢-
kU
.c

UJ

rr

10"1

10"210.2

~-t-~F FEM Tetrahedron mesh
X-FEM Hexahedron mesh

L~.~X-F,EM Tetrahedron mesh =

. . . ~/i

/ fL

//I
/ =

¢

i ’
10"1

h

]

100

Figure 16: Error in energy for the spherical inclusion problem; structured mesh is labeled
X-FEM Hexahedron, conforming mesh is labeled FEM Tetrahedron, X-FEM Tetrahedron is
non-conforming unstructured mesh.

s

The problem was solved with structured meshes consisting of cubic elements. The meshes
were. n×n×n, with n = 6,11,21 and 41. A typical mesh is shown in Fig. 15, along with the
polygonized material interface.

The error in energy is shown in Fig. 16. For comparison, the problem was also solved with a
sequence of unstructured tetrahedral meshes. Two types of tetrahedral meshes were used; those
conforming to the interface (labeled FEM) and those not conforming to the interface (labeled
X-FEM).

As can be seen the accuracy of the structured mesh is better than the unstructured tetra-
hedral mesh that conforms to the interface, although for the finest mesh the accuracy is the
same. The rate of convergence for the structured mesh is about 0.77, which is slightly below
the optimal rate of 1.0. The results for a non-conforming unstructured tetrahedral mesh are
also shown.

We show the accuracy with the Sukumar et al. [21] correction for discontinuous derivative
enrichments, in Fig. 17. As can be seen, there is some improvement but not as marked as in
two dimensional problems.
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Figure 17: A spherical inclusion in an infinite solid under uniaxial stress with hexahedron mesh

4.2.4 4D Carbon-Carbon Composite

The next example concerns a representative volume element of a composite. In this case the 4D
Carbon-Carbon composite of Delenste et al [12] was considered to show how easy it is to make
a mesh for such studies (shown in Fig.~ 18). Representative volume elements are a particularly
suitable application of these methods since the domain is cubic and only internal details need
to be treated; meshing such problems is very time consuming.

The composite material comprises of four reinforcement directions which are parallel to
the diagonals of a cube, i.e. the (1, 1, 1), (-1, 1, 1), (--1,-1, 1) and (1,-1, 1) directions. 
implicit functions for the interior surfaces in this case were constructed analytically and directly
inserted in the code. For example, for a fiber in the direction given by a unit vector e with
radius R, the implicit function deforming a filament that passes through xo is

II (x- Xo) e II -R = o (56)

The carbon reinforcements are defined as a transverse isotropic material, whose longitudinal
Young’s modulus is El = 200.0GPa, longitudinal Poisson’s ratio is ut = 0.4, longitudinal shear
modulus is Gl = 8.0GPa, transverse Poisson’s ratio is ut = 0.3 and transverse Young’s modulus
is 10.0GPa. The carbon matrix is defined as an isotropic material with Young’s modulus
E = 8.0GPa and Poisson’s ratio u = 0.46. The fiber volume fraction is 0.68. The values are
chosen based on the problem defined in Delenste et al. [12]. The homogenized Young’s modulus
in the z-direction is calculated. The result is Eh = 8.5GPa which is close to the experimental
results Eh = 8.0GPa (see [12] and [1]).

The influences of the ratios of Young’s moduli and the volume fraction to the homogenized
material constants in (0, 0, 1) direction were investigated for the material. In this analysis, the
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Figure 18: Polygonized material interface of the 4D carbon-carbon composite material in a 
21 x 21 x 21 mesh and a yarn volume fraction of 0.49; ( z  is upward, z is horizontal to right) 

yarn and the matrix are defined as isotropic materials. Three cases of yarn volume fractions 
(0.67, 0.57 and 0.48) are calculated for different ratio of Ematriz and E,,,,, where Ematris and 
E,,,, are Young’s modulus of matrix and yarn, respectively. Both Poisson’s ratio of the matrix 
and the yarn are set to 0.4. Yarn volume fraction 0.67 is the maximum volume fraction, since 
the volume fraction larger than 0.67 causes interpenetration of yarns. The variations of the 
homogenized Young’s modulus and Poisson’s ratio are shown in Fig. 19 and Fig. 20, respectively. 
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Figure 19: Influence of the Ey.~,~/E~.t~i~ on homogenized Young’s modulus
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5 Conclusions

A simplified method for modeling solid objects by structured finite elements has been presented.
The method uses implicit functions to describe the outside surface of the object and any inner
surfaces, such as material interfaces, sliding surfaces and cracks. Enrichment functions are then
used to modify the structured finite element approximations of the displacement field so that
the internal features are modeled. In addition to modeling discontinuities in the displacement
field, asymptotic local solutions can be introduced by the enrichment field. Other local fields,
such as those for holes, can be introduced as shown by Strouboulis et al. [23]. Overlapping
meshes such as described by Charlesworth et al. [8] could also be used.

The method provides good accuracy. Although the rate of convergence is somewhat below
the optimal rates, the absolute accuracy is on the same order as for unstructured meshes that
observe the discontinuity. In view of the reduced burden in meshing this should be acceptable.
Of course, for problems such as crack problems, much greater accuracy can be obtained than
with regular finite elements as is apparent from Gravouil et al. [16]. Comparisons have not been
made with quarter point elements.

The success of the method hinges on the definition of shapes in implicit radial basis func-
tions. This leads to full equations; but the multipolar methods described by Carr et al. [7] can
effectively handle millions of points.

The major drawbacks of the method are the need to perform the integration of the weak
form over partitions of an element for active cells cut by boundaries and the fact that the
method as developed so far has a uniform mesh over the entire object. The quadrature issue
is not difficult when a single surface passes through an element, but becomes awkward when
two or more surfaces pass through a single element; such situations are a distinct possibility in
multimaterial problems. The quadrature algorithms for such situations could get quite com-
plex, but once coded would not require user:intervention.

The issue of resolution should be tractable by p-type methods and structured h-type@ refine-
ment (or coarsening) where the voxel sizes vary in subdomains of the mesh. This would 
particularly attractive with adaptive solution strategies, see for example Oden et al [19].

The main advantage of the method is thesimplicity of the model generation. Many models,
such as representative volume elements for generating material properties and geotechnical
models, are inherently cuboid with considerable internal detail. The generation of unstructured
meshes for such problems is quite burdensome; it is time-intensive and it is difficult to ensure
quality and correctness. With these methods, the major task becomes the generation of surfaces
that define the boundaries of the object and interfaces. Although much remains to be done

beyond what has been described here, the potential of the method is quite attractive.
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Appendix

The exact solution for spherical inclusion under uniaxial tension (Good-

ier [14])

We define a spherical coordinate system (r, 0, N) with its origin at the center of the sphere,
whose radius is a. A tension T is applied in the Z direction. The problem is symmetric about
¢ (Fig. 14). The variables are distinguished by superscripts 1 and 2 for the inclusion and the

matrix, respectively. The exact displacement of the matrix is given by

1 A 3B 5 - 4Vl C 9B Taur=_7~_TV+{~_2~l/"2
7}COS20+Tk~{(1 ~l)+(l+~l)cos2e} (57a)

C CB Ta "1 (575)
U~ -(2--z. ~ -~r~---T) sin28 +-~E-~I( + vl)sin28

The exact displacement of the inclusion is

ur2 = Hr +. Fr + 3Fr cos 20
up = -3Fr sin 20

(5sa)
(58b)

where a is the sphere radius and the stress field of the matrix is

1 2~1{ ~_~ 2Ul C 12B 5 -- /]1 C 36B. cos 28} (59a)art = (1 - 2u~) 3 +--rT- + (- 21 - 2ulr3 +. ~)

(595)

3B C 21B
rs + (r3 rS )cos20}+Tsin0sin0

(59c)

9B 3C
lr~B

+ ( ) cos 28} - T cos 8 sin 

+ T cos 8 cos 8
A 2r,1 C

0"~¢ ~- 2#1{ -A -- 2 (1 - vl) C(1 - 2~1)/’3
2 1~-2(1,~ + ~) C1are ----

(-1 ---- 2Vl) /,3

(59d)

+ 2r~ } sin 28 (59e)

The stress field in the inclusion is

2 2’ " l+b’2a~r = ~2(1 _---:-~v2H + F - -3Fcos28’

o. t 1+/z2 "a~. = ,,t~2~ 1 _---L~2 n + F - 3F cos 28)

1 +v2

2are = -6#2F sin 28

(60a)

(60b)

(6Oc)

(60d)
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where A, B, C, F, H are

A=
T (#1- #2){(1 - 2u2)(6- 5uj2#1 + (3:+ 19u2 - 20UlU2)#2}

8~i {(7- 5/21)/..£ 1 + (8- lOuj#2}{(l - 2u2)2#i + (i + u2)~2}

T {(1-ul)(l+u2)i+., -- U2}#2 -- (1 - 2/22)#1a3
+

4.1 (I - 2u2)2#i + (1 + u2)#2)

B = T #a - #2

a~

8p~ (7- 5~,~)~1 + (8 - 10~,1),~

C = T 5(1 - 2ul)(#l - #2) 3
8~1 (7- 5/21)#1 t- ( 8- 10ul)#2
5 T

F = 5(-1 + ui) 5#1Ul _ 7#1 + 10#2Ul - 8#2

1
H = --~.(2uiu2 - uz + 1 - 2u2)

T

--p2/21 -,- p2/22/11 -- 2pl/11 -J- 4#1/22/21#2 -- #2/22 -- 2#i + 4#1V2

where E and u are the appropriate Young’s modulus and Poisson’s ratio, respectively.
Eshear modulus # is given by # = )(i+~)"

(61a)

(61b)

(61c)

(61d)

(61e)

(61f)

(61g)

The
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